Machine Learning and Deep Learning Bootcamp in Python

Machine Learning, Neural Networks, Deep Learning and Reinforcement Learning, GAN in Keras and TensorFlow
4.57 (1560 reviews)
Udemy
platform
English
language
Data Science
category
instructor
Machine Learning and Deep Learning Bootcamp in Python
16 671
students
31.5 hours
content
Feb 2025
last update
$139.99
regular price

Why take this course?

这个概述是对机器学习、深度学习,特别是计算机视觉领域的一个全面的介绍。它涵盖了以下几个关键点:

  1. 深度神经网络:深度神经网络(DNNs)是由多层非线性转换组成的神经网络,能够学习数据中的复杂模式。它们在图像识别、自然语言处理等领域有着广泛的应用。

  2. ReLU激活函数和梯度消失问题:ReLU(Rectified Linear Unit)是一种常用的激活函数,它帮助解决深层网络中的梯度消失或爆炸问题。这些问题会影响模型的训练效率和性能。

  3. 训练深度神经网络:训练深度网络需要有效的方法来优化损失函数,避免过拟合等问题。

  4. 损失函数(代价函数):损失函数衡量模型预测与实际数据之间的差异,目标是最小化这个差异。常见的包括均方误差、交叉熵等。

  5. 卷积神经网络(CNNs):CNNs通过卷积层和池化层来提取图像中的有用特征,减少参数数量并避免过拟合。它们在图像识别、分类等任务中表现出色。

  6. 循环神经网络(RNNs):RNNs通过在节点之间保持信息连接的方式处理序列数据,特别适合处理时间序列和自然语言等具有顺序性的任务。

  7. 循环神经网络的梯度爆炸问题:由于权重的累积,在训练RNNs时可能会遇到梯度爆炸的问题,影响模型的学习过程。

  8. 长短期记忆(LSTM)和门控循环单元(GRUs):LSTM和GRUs是特殊类型的RNNs,它们能够更好地处理长期依赖问题。

  9. 数值优化(在机器学习中):数值优化是训练神经网络的核心部分,包括选择合适的优化算法(如SGD、Adam等)和调整学习率等。

  10. 计算机视觉相关的深度学习模型:如YOLO(You Only Look Once)和SSD(Single Shot MultiBox Detector),这些模型专门用于实时物体检测任务。

  11. 课程内容:这个课程提供了150+的视频讲解、讲义和源代码,覆盖了从基础到高级的机器学习和深度学习知识,以及计算机视觉中的最新技术。

  12. 优势:这个课程的优势在于它将理论知识与实际应用相结合,帮助学习者在实践中提高技能,同时也提供了30天的退款保证。

通过这个课程,学习者可以深入理解和掌握机器学习、深度学习和计算机视觉的关键概念和技术,从而在相关领域提升自己的能力和竞争力。

Course Gallery

Machine Learning and Deep Learning Bootcamp in Python – Screenshot 1
Screenshot 1Machine Learning and Deep Learning Bootcamp in Python
Machine Learning and Deep Learning Bootcamp in Python – Screenshot 2
Screenshot 2Machine Learning and Deep Learning Bootcamp in Python
Machine Learning and Deep Learning Bootcamp in Python – Screenshot 3
Screenshot 3Machine Learning and Deep Learning Bootcamp in Python
Machine Learning and Deep Learning Bootcamp in Python – Screenshot 4
Screenshot 4Machine Learning and Deep Learning Bootcamp in Python

Loading charts...

Comidoc Review

Our Verdict

This Udemy course on Machine Learning and Deep Learning Bootcamp in Python provides a well-rounded overview of various machine learning techniques, neural networks, deep learning methods, and reinforcement learning. Although some areas like code implementation and mathematical explanations could benefit from additional depth, the course excels in offering in-depth theoretical knowledge and practical examples to help learners grasp essential concepts. The 31.5 hours of content are current and cover a wide array of topics related to machine learning and deep learning, making this course a valuable resource for both beginners and those seeking a refresher.

What We Liked

  • Comprehensive coverage of machine learning, deep learning, and related techniques
  • In-depth mathematical explanations for better understanding
  • Well-explained theory fundamentals for industry applications
  • Excellent examples that help clarify concepts

Potential Drawbacks

  • Codes for implementation could be explained more thoroughly
  • Some essential code samples are missing in neural networks section
  • More detailed explanations of some lines of code would be helpful
  • Occasional lack of depth, especially in Mathematics
617930
udemy ID
21/09/2015
course created date
16/11/2019
course indexed date
Bot
course submited by