Python para Data Science & Machine Learning en 18 Días
Data Science extremo con Numpy, Pandas, Matplotlib, Seaborn, Scikit Learn, Tensorflow, Machine Learning, y todo lo demás
4.77 (2172 reviews)

11 561
students
25.5 hours
content
Mar 2025
last update
$94.99
regular price
What you will learn
Aplicarás el Data Science en proyectos de manipulación compleja de información.
Escribirás código Python de manera global, con confianza y comodidad
Usarás Pandas para limpiar, transformar, y analizar grandes conjuntos de datos
Dominarás NumPy para operaciones matemáticas y estadísticas sobre grandes arrays de datos
Crearás visualizaciones atractivas y reveladoras con Matplotlib, Seaborn y Sci-kit Learn
Harás predicciones usando algoritmos de Machine Learning
Usarás Tensorflow para implementar redes neuronales y Deep Learning
Desarrollarás habilidades para el Análisis Exploratorio de Datos (EDA)
Al finalizar, serás capaz de recibir una tonelada de datos, y devolver visualizaciones interesantes, que ayuden a tus clientes a tomar decisiones relevantes.
Serás una persona con el potencial de hacer de nuestro mundo un lugar mejor.
Charts
Students
Price
Rating & Reviews
Enrollment Distribution
Comidoc Review
Our Verdict
Federico Garay's 'Python para Data Science & Machine Learning en 18 Días' offers an engaging and thorough learning experience in the realms of Data Science, Machine Learning, and related tools through practical examples in Python. Although it demands dedication from learners with fast-paced content delivery, those committed will acquire data analysis expertise backed by hands-on practice and curated resources to support their journey.
What We Liked
- Comprehensive coverage of Data Science & Machine Learning tools with 25.5 hours of content
- Engaging teaching style and daily practical exercises by an experienced Udemy instructor
- Curated resources like code files, databases, and cheat sheets for better understanding
- Includes popular libraries such as NumPy, Pandas, TensorFlow, Scikit-Learn, & more
Potential Drawbacks
- Jupyter Notebooks setup might be challenging for some learners in the beginning phase
- Concepts are presented quite fast, which can overwhelm beginners with no prior exposure to Python
- Lack of closed captions and interactive discussions on certain complex topics
- Some content and library versions may require occasional updates
5702682
udemy ID
10/12/2023
course created date
05/05/2024
course indexed date
Bot
course submited by