Principles and Practices of the Generative AI Life Cycle
Explore key concepts, methodologies, and best practices for every stage of the GenAI life cycle.
5.00 (5 reviews)

4 216
students
17 hours
content
Oct 2024
last update
$74.99
regular price
What you will learn
Key Phases of the GenAI Life Cycle: Understand the core stages of the generative AI life cycle and their significance in successful AI deployment.
The Role of Governance in AI Projects: Learn about governance frameworks to ensure ethical and regulatory alignment throughout the AI life cycle.
Problem Identification and Requirement Gathering: Explore strategies for defining problems and aligning GenAI solutions with business goals.
Data Types and Acquisition Strategies: Gain insights into selecting and acquiring the right data for GenAI model development.
Ensuring Data Quality and Ethics: Understand the importance of data accuracy, quality, and ethical considerations during the collection process.
GenAI Model Design and Selection: Learn to select the most suitable generative AI models for different tasks and design custom models.
Optimizing Model Performance: Discover techniques for tuning and optimizing models to achieve peak performance.
Training Data Preparation and Monitoring: Explore how to prepare and select training data and monitor the training process to avoid common pitfalls.
Deploying and Integrating GenAI Models: Learn best practices for integrating generative AI into existing systems and managing change effectively.
Continuous Monitoring and Model Maintenance: Understand the tools and metrics needed to monitor performance and handle model drift over time.
Data Privacy and Cybersecurity Measures: Gain insights into safeguarding models and data from cyber threats and ensuring compliance with privacy regulations.
Auditing and Reporting AI Models: Learn to conduct performance audits, maintain transparency, and document AI life cycles for compliance.
Managing AI Model Updates and Versions: Explore strategies for managing versions and implementing feedback loops for continuous improvement.
Decommissioning AI Models: Understand when and how to retire models ethically while ensuring proper data and model archival strategies.
User Feedback and Iterative Development: Learn to incorporate user feedback and manage iterative development cycles for ongoing improvements.
Future Trends in GenAI Life Cycle Management: Gain insights into emerging technologies, AI governance trends, and innovations shaping the future of GenAI.
Screenshots




6231867
udemy ID
12/10/2024
course created date
19/10/2024
course indexed date
Bot
course submited by