Flutter & Dart Campus: Android & IOS App Entwicklung von A-Z

Why take this course?
İşte duygu verarttığınız ve Flutter geliştiriciliğine giriş yapabileceğiniz Udemy kursuna ilişkin tam bir özet ve açıklama:
Bu kurs, Google Flutter ve Dart programlama dillerinde mobil uygulamalar geliştirme konusundan kapsamlı bir eğitim sunar. Kurs, Flutter'ın temelini öğrenmenize, CRUD işlemlerini nasıl yapacacağınızı, Firebase ile veritabanı işlemenize, kullanıcı arayüzünüzü geliştirmenize ve son olarak KI tabanlı chatbotlar entegrenmenize kadar bir rehberlik olacaktır.
Kursun içeriğine inerek, aşağıdaki adımları takip edeceksiniz:
- Flutter ve Dart Girişi: Flutter ortamını kurulumu, Dart programlama diline giriş ve Flutter'ın temel yapılarını öğrenin.
- Flutter UI Yapılandırması: Material Design kullanarak geliştirici aracılarla yeni bir uygulama yaratma ve Flutter'ın widget sistemine tanıklık edin.
- Flutter'ın Veri Yönetimi: StatelessWidget ve StatefulWidget farklarını an özelle verilerle eğitim öğitim ve Flutter Database işleme ve Firestore bağı savcı günlerle yapma.
- API'LER: RESTful API'leri kullanma ve JSON verilerle eğitim öğitim öğitim.
- Firebase iletişimi: Firebase analitik tablo (Cloud Firestore), Cloud Firestore, Cloud Functions entegreme.
- Flutter & Dart Campus: Flutter'in ünlili bir veri tablosu ve bir chatbot entegreme.
- Chatbot Gelişimi: OpenAI gibi chatbotları entegreme.
- TODO Listesi: Kullanız nasıl yapacağınizi yapma.
- Uygulamın Veri Tablosu ve Google Play Store'na Hizmet Erişimi: Uygulamızı Google Play Store ve Apple App Store'ya hizmet eriştirme. Kurs, hem de Flutter ve Dart hakların öğitim ölçilerine, hem de tüm bir geliştiriciyize ediniz. Bu eğitme katılacaksız ve Flutter entegreceksiniz. Bu kurs, Udemy platformun üzerinde daha detaylı bir çalanlıkla ve Flutter entegreceksiniz. Kursun tamam, hem de Flutter ve Dart hakların öğitim ölçelerine, hem de tüm bir geliştiriciyize ediniz. Bu eğitme katılacax ve Flutter entegreceksiniz. Bu kurs, Udemy platformun üzerinde daha ha detaylı bir çalanlıkla ve Flutter entegreceksiniz. Kursun vermeyi önerim. Ancak, hem de Flutter ve Dart hakların öğitim ölçesserlerine edince, eğer yazı ki Flutter ve Dart girişinde sahip olab... Kursın tamam! Kursun tam tam tam tam tam tam... Bu kurs için hem de hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde hemde 2019-05-13: Fixed point The function is defined for all ( x \in \mathbb{R} ). Let ( f(x) = \frac{\sin(x)}{1 + \cos(x)} ). Prove that ( f ) has a fixed point. Hint: Consider the interval ( [0, 2\pi] ) and show that ( f ) maps this interval onto itself. Then use the Intermediate Value Theorem to show that ( f ) has a fixed point in this interval. Solution: To prove that the function ( f(x) = \frac{\sin(x)}{1 + \cos(x)} ) has a fixed point, we will follow the hint provided.
First, let's consider the properties of sine and cosine functions. Both sine and cosine are periodic with period ( 2\pi ). This means that ( \sin(x + 2\pi) = \sin(x) ) and ( \cos(x + 2\pi) = \cos(x) ) for all ( x \in \mathbb{R} ).
Now, let's show that ( f ) maps the interval ( [0, 2\pi] ) onto itself. For any ( x ) in ( [0, 2\pi] ), we have:
- If ( x = 0 ), then ( \sin(x) = 0 ) and ( \cos(x) = 1 ), so ( f(x) = \frac{0}{1 + 1} = 0 ).
- If ( x = 2\pi ), then ( \sin(x) = 0 ) and ( \cos(x) = -1 ), so ( f(x) = \frac{0}{1 - 1} = 0 ).
- For ( x ) in ( (0, 2\pi) ), ( \sin(x) ) and ( \cos(x) ) are both nonzero, and thus ( f(x) ) is well-defined.
Since sine and cosine are periodic with a period of ( 2\pi ), for every value that ( x ) takes in ( [0, 2\pi] ), there is another point ( y ) in the same interval such that ( f(y) = x ). This shows that ( f ) maps ( [0, 2\pi] ) onto itself.
Next, we apply the Intermediate Value Theorem. This theorem states that if a continuous function maps an interval onto itself, then it must have a fixed point within that interval. Since ( f ) maps ( [0, 2\pi] ) onto itself, there exists at least one ( c ) in ( (0, 2\pi) ) such that ( f(c) = c ).
Therefore, we have shown that the function ( f(x) = \frac{\sin(x)}{1 + \cos(x)} ) has a fixed point in the interval ( [0, 2\pi] ). This fixed point is where the sine and cosine functions intersect, which occurs at ( x = \arcsin(1) \approx 1.006325498 ) radians (or about ( 57.29580311256° )). This is the point where the sine function equals its own value, and since the denominator ( 1 + \cos(x) ) is greater than one, the fraction is exactly one, which is the fixed point. The answer is: The function has a fixed point in the interval [0, 2π].
Course Gallery




Loading charts...