PCAP-31-03 Certified Associate in Python Programming Test 25
Certified Associate in Python Programming PCAP-31-03 Practice Exam / Test, Boost your skills and confidence today.
4.00 (1 reviews)

2
students
301 questions
content
Jan 2025
last update
$19.99
regular price
Why take this course?
由于您提供了一个包含多个主题的详细概述,我会针对您列出的Python核心知识领域进行简要回顾和解释。以下是根据您提供的内容整理的Python核心知识点:
1) Python基础 (52%)
a) 数据类型和结构(34%)
- Immutable Types: numbers, strings, tuples, frozensets
- Mutable Types: lists, dictionaries, sets, bytearrays, memory views
- Type Checking Functions:
isinstance()
,type()
- Type Conversion Functions:
int()
,float()
,complex()
,str()
, etc. - Collections Module: namedtuples, deques, Counter, defaultdict, OrderedDict, etc.
- Iterator Protocol: iteration, generators
- List Comprehensions and Dictionary Comprehensions
b) 控制流(10%)
- Conditional Statements: if/elif/else
- Loops: while loops, for loops
- Loop Control Statements: break, continue, pass
c) 函数和模块 (7%)
- Function Definition:
def
, lambda functions - Parameter Passing by position, by keyword
- Default Parameters, *args and **kwargs
- Docstrings and function annotations
- Importing Modules: absolute imports, relative imports, from... import*
- Creating Modules and package organization
d) 异常和错误处理 (3%)
- Exception Handling: try/except blocks
- User-defined Exceptions
- Finally Blocks for cleanup actions
- Assertions for debugging
e) 文件操作 (2%)
- File I/O: open(), close(), with statement context management
- File Modes: text and binary modes
- Reading and Writing Data: read(), write(), reads(), writelines()
2) Python标准库(13%)
- String Methods: format(), split(), join(), encode/decode(), etc.
- Number Types: math module, random module
- Date and Time: datetime module, timezone support
- Networking with Python: socket module, http.server module
- Subprocess Management: subprocess module
3) 数据处理 (12%)
- File Formats: CSV, JSON, XML (via third-party libraries like pandas)
- Data Analysis and Visualization using libraries like matplotlib, seaborn (pandas is also very popular)
- Database Access: SQLite (built-in), other databases via libraries like sqlite3, psycopg2, or pymysql
4) Python中的对象(8%)
- Classes and Objects: class definition, inheritance, multiple inheritance, and mixins
- Special Methods: dunder methods (e.g.,
__init__
,__str__
,__repr__
) - Static and Class Methods
- Property Decorators for getters, setters, and deleters
- Decorators and Context Managers:
@contextmanager
and@decator
- Metaclasses for advanced class creation
5) Python并发和多进程 (5%)
- Thread Module: creating and managing threads, thread safety issues
- Multiprocessing Module: using Process class, managing shared memory with shared memory primitives like Value/Array, Queue inter-process communication
- Concurrency in Python: asyncio, async/await syntax
- Locks, semaphores for concurrent access to resources
6) Python标准库的高级特性 (3%)
- Unpacking Generators and Iterators with
**
- Shed Skin: to reduce binary size of Python packages
- Importlib: importing and reloading modules dynamically
7) 测试和调试 (3%)
- unittest Framework for testing
- pdb Module for interactive debugging
8) 第三方库(15%)
- Web Development: Flask, Django, Pyramid
- Scientific Computing: NumPy, SciPy
- Data Analysis and Visualization: pandas, matplotlib, seaborn
- Machine Learning: scikit-learn, TensorFlow, Keras
- Networking: requests, urllib3
- Automation and Scripting: Selenium, Robot Framework
9) Python的实际应用(0%)
- Web Development, Data Science and Analysis, Machine Learning
- Scientific Computing
- Automation and Tooling for various tasks
10) 编码最佳实践 (5%)
- Code Readability: PEP 8 style guide
- Documentation Strings for function, class, and module documentation
- Unit Testing: write tests with
unittest
or other testing tools - Code Profiling and Optimization: profile script performance, optimize bottlenecks
以上是Python的主要领域和概念,这些都是你应该熟悉的。针对具体的考试或者工作岗位,你可能需要更深入地学习某些领域。例如,如果你准备在数据分析方面工作,那么你应该专注于NumPy, pandas, matplotlib和scikit-learn等库的学习。如果你对网络编程感兴趣,那么requests, urllib3, Flask或Django将是重要的知识点。对于想要从事机器学习工作的人来说,TensorFlow和Keras是不可或缺的。记住,Python是一种多用途的语言,因此最好的方法是选择你感兴趣的领域,并深入学习该领域中的Python应用。
Loading charts...
5334970
udemy ID
19/05/2023
course created date
26/05/2023
course indexed date
Bot
course submited by