PCAP-31-03 Certified Associate in Python Programming Test 25

Certified Associate in Python Programming PCAP-31-03 Practice Exam / Test, Boost your skills and confidence today.
4.00 (1 reviews)
Udemy
platform
English
language
IT Certification
category
instructor
PCAP-31-03 Certified Associate in Python Programming Test 25
2
students
301 questions
content
Jan 2025
last update
$19.99
regular price

Why take this course?

由于您提供了一个包含多个主题的详细概述,我会针对您列出的Python核心知识领域进行简要回顾和解释。以下是根据您提供的内容整理的Python核心知识点:

1) Python基础 (52%)

a) 数据类型和结构(34%)

  • Immutable Types: numbers, strings, tuples, frozensets
  • Mutable Types: lists, dictionaries, sets, bytearrays, memory views
  • Type Checking Functions: isinstance(), type()
  • Type Conversion Functions: int(), float(), complex(), str(), etc.
  • Collections Module: namedtuples, deques, Counter, defaultdict, OrderedDict, etc.
  • Iterator Protocol: iteration, generators
  • List Comprehensions and Dictionary Comprehensions

b) 控制流(10%)

  • Conditional Statements: if/elif/else
  • Loops: while loops, for loops
  • Loop Control Statements: break, continue, pass

c) 函数和模块 (7%)

  • Function Definition: def, lambda functions
  • Parameter Passing by position, by keyword
  • Default Parameters, *args and **kwargs
  • Docstrings and function annotations
  • Importing Modules: absolute imports, relative imports, from... import*
  • Creating Modules and package organization

d) 异常和错误处理 (3%)

  • Exception Handling: try/except blocks
  • User-defined Exceptions
  • Finally Blocks for cleanup actions
  • Assertions for debugging

e) 文件操作 (2%)

  • File I/O: open(), close(), with statement context management
  • File Modes: text and binary modes
  • Reading and Writing Data: read(), write(), reads(), writelines()

2) Python标准库(13%)

  • String Methods: format(), split(), join(), encode/decode(), etc.
  • Number Types: math module, random module
  • Date and Time: datetime module, timezone support
  • Networking with Python: socket module, http.server module
  • Subprocess Management: subprocess module

3) 数据处理 (12%)

  • File Formats: CSV, JSON, XML (via third-party libraries like pandas)
  • Data Analysis and Visualization using libraries like matplotlib, seaborn (pandas is also very popular)
  • Database Access: SQLite (built-in), other databases via libraries like sqlite3, psycopg2, or pymysql

4) Python中的对象(8%)

  • Classes and Objects: class definition, inheritance, multiple inheritance, and mixins
  • Special Methods: dunder methods (e.g., __init__, __str__, __repr__)
  • Static and Class Methods
  • Property Decorators for getters, setters, and deleters
  • Decorators and Context Managers: @contextmanager and @decator
  • Metaclasses for advanced class creation

5) Python并发和多进程 (5%)

  • Thread Module: creating and managing threads, thread safety issues
  • Multiprocessing Module: using Process class, managing shared memory with shared memory primitives like Value/Array, Queue inter-process communication
  • Concurrency in Python: asyncio, async/await syntax
  • Locks, semaphores for concurrent access to resources

6) Python标准库的高级特性 (3%)

  • Unpacking Generators and Iterators with **
  • Shed Skin: to reduce binary size of Python packages
  • Importlib: importing and reloading modules dynamically

7) 测试和调试 (3%)

  • unittest Framework for testing
  • pdb Module for interactive debugging

8) 第三方库(15%)

  • Web Development: Flask, Django, Pyramid
  • Scientific Computing: NumPy, SciPy
  • Data Analysis and Visualization: pandas, matplotlib, seaborn
  • Machine Learning: scikit-learn, TensorFlow, Keras
  • Networking: requests, urllib3
  • Automation and Scripting: Selenium, Robot Framework

9) Python的实际应用(0%)

  • Web Development, Data Science and Analysis, Machine Learning
  • Scientific Computing
  • Automation and Tooling for various tasks

10) 编码最佳实践 (5%)

  • Code Readability: PEP 8 style guide
  • Documentation Strings for function, class, and module documentation
  • Unit Testing: write tests with unittest or other testing tools
  • Code Profiling and Optimization: profile script performance, optimize bottlenecks

以上是Python的主要领域和概念,这些都是你应该熟悉的。针对具体的考试或者工作岗位,你可能需要更深入地学习某些领域。例如,如果你准备在数据分析方面工作,那么你应该专注于NumPy, pandas, matplotlib和scikit-learn等库的学习。如果你对网络编程感兴趣,那么requests, urllib3, Flask或Django将是重要的知识点。对于想要从事机器学习工作的人来说,TensorFlow和Keras是不可或缺的。记住,Python是一种多用途的语言,因此最好的方法是选择你感兴趣的领域,并深入学习该领域中的Python应用。

Loading charts...

5334970
udemy ID
19/05/2023
course created date
26/05/2023
course indexed date
Bot
course submited by